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Abstract

We report the results of extensive numerical experiments on the Kuramoto-Sivashinsky equation

in the strongly chaotic regime as the viscosity parameter is decreased and increasingly more linearly

unstable modes enter the dynamics. General initial conditions are used and evolving states do not

assume odd-parity. A large number of numerical experiments are employed in order to obtain

quantitative characteristics of the dynamics. We report on di�erent routes to chaos and provide

numerical evidence and construction of strange attractors with self-similar characteristics. As the

\viscosity" parameter decreases the dynamics becomes increasingly more complicated and chaotic.

In particular it is found that regular behavior in the form of steady state or steady state traveling

waves is supported amidst the time-dependent and irregular motions. We show that multimodal

steady states emerge and are supported on decreasing windows in parameter space. In addition we

invoke a self-similarity property of the equation, to show that these pro�les are obtainable from

global �xed point attractors of the Kuramoto-Sivashinsky equation at much larger values of the

viscosity.

�The work of Y.S. Smyrlis was supported by NATO Grant CRG 920097.
yThe work of D.T. Papageorgiou was supported by the National Science Foundation Grant NSF-DMS-9003227

and by NATO Grant CRG 920097. Additional support was also provided by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-19480 while he was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

i



1 Introduction

The Kuramoto-Sivashinsky equation is one of the simplest one-dimensional PDE's which exhibits

complex dynamical behavior. As an evolution equation it arises in a number of applications includ-

ing concentration waves and plasma physics ([4], [20], [21], [22]), 
ame propagation and reaction

di�usion combustion dynamics ([30], [31]), free surface �lm-
ows ([2], [14], [29]) and two-phase


ows in cylindrical or plane geometries [7], [11], [25], [35], [36]. The equation can be written as

Ut + UUx + Uxx + Uxxxx = 0; x 2 [�
L

2
;
L

2
]per; (1)

noting that the solution remains periodic of period L if the initial data are periodic.

Equation (1) can be normalized to 2�-periodic domains by the transformations x1 = �x=L,

U = �u=L and t1 = �2t=L2, which on dropping the subscripts 1 yields the scaled KS equation

ut + uux + uxx + �uxxxx = 0;

(x; t) 2 IR1 � IR+; (2)

u(x; t) = u(x+ 2�; t);

where � = �2

L2
> 0 represents a dimensionless wavelength of u. Physically, then, the limit � ! 0

corresponds to the waves in (2) becoming in�nitely long. It is easily established by linearization of

(2) that for a given � the �rst mod(��
1
2 ) Fourier modes are linearly unstable and grow exponen-

tially. It is well-known, from numerical experiments for instance (see below), that solutions to (2)

become increasingly irregular as � is decreased.

Without loss of generality the study of solutions with zero spatial mean is su�cient due to

Galilean invariance. An analytical study of the KS equation was carried out by Nicolaenko et al.

[24] (referred to as [NST]), where it is shown that if the initial data are in L2 and are of odd-parity

(i.e. antisymmetric about x = 0 for (1) or x = � for (2)), then the solutions remain in L2 for all

time and there is a globally attracting set also bounded in L2. The bound depends on the value of

L or � and the estimate of [24] gives the following upper bound:

lim
t!1

supjju(�; t)jj2 � const � ��3=2: (3)

The corresponding bound for (1) is O(L5=2). Such bounds of the L2 norm are useful in determining

estimates of the Hausdor� dimension, dH , of the universal attractor. In fact working with equation

(1), it has been shown by Temam [34], that if the bound for the L2 norm is O(L�) then dH is

proportional to L(7+2�)=8 and so the [NST] result yields the estimate L13=8 for dH ; we note that

the conjectured best bound is O(L) but a proof is not available yet.

The analysis in [NST] was based on the odd-parity of the initial data. This restriction has

been removed recently by several authors. Goodman [13] considers general smooth initial data and

obtains a bound of the same form as (3). This bound is improved further, however, by Il'yashenko

[17] and independently using a more classical approach by Collet et al. [5], and is

lim
t!1

supjju(�; t)jj2 � const � ��13=10: (4)

Again the analogous bound for (1) is O(L8=5) improving the estimate of the Hausdor� dimension

to L51=40 bringing it closer to the conjectured best bound. We note that the analysis in [5] and [17]

applies also to odd-parity initial conditions and so is an improvement of the method in [NST].

Analyticity of the solution has also been proved by Collet et al. [6]. In fact, considering equation

(1), the result proved is that for large t, the function U(x; t) is analytic in x in a strip of width
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� � const � L�16=25 around the real axis, which in turn implies that the high frequency part of the

spectrum has the form

jUn(t)j � O(exp(�const � L�16=25qjnj); (5)

where Un(t) is the nth Fourier coe�cient of U(x; t) and q = 2�=L. By a series of numerical

experiments a much stronger result that (5) has been conjectured in [6], namely that there exists

a � > 0 independent of L such that the solutions of (1) satisfy

lim
t!1

sup
X
n2ZZ

���e�qjnjUn(t)
���2 � const:; (6)

and the numerical work gives � � 3:50. These results are extremely useful in guiding our numerical

work as is explained in Section 2.

There are several computational and analytical studies dealing with the construction of approx-

imate inertial manifolds of KS. Kirby [19] develops a Galerkin approximation based on Sobolev

eigenfunctions; Chen [3] constructs approximate inertial manifolds by broadening the gaps in the

spectrum in order to obtain low dimensional behavior; Foias et al. [10] construct fully discrete

nonlinear Galerkin schemes based on approximate inertial manifolds of KS; Robinson [28] uses the

bounds of [5] and [17] to produce a new estimate of the dimension of the globally absorbing set of

KS. Additional references may be found in these articles.

A signi�cant amount of numerical work preceded the theoretical results outlined above. The

numerical experiments revealed a wealth of interesting nonlinear phenomena and in particular

highly complex dynamics including chaotic trajectories as the dissipation parameter � decreases.

Earlier works include the computations of Cohen et al. [4], Sivashinsky and Michelson [32], Aimar

[1], and Manneville [23]. Systematic explorations of phase space were carried out by Hyman and

Nicolaenko [15] and Hyman et al. [16], Papageorgiou and Smyrlis [27], [33] and Coward et al. [7]

who report on many features of the dynamics. Kevrekidis et al. [18] computed the bifurcation

diagram for relatively large values of �, using a bifurcation algorithm. For smaller values of �

unsteady phenomena set in; it was �rst found by Papageorgiou and Smyrlis [27] and also Smyrlis

and Papageorgiou [33], that in the case of odd-parity initial conditions there is a period-doubling

route to chaos. Extensive numerical solutions were employed to provide strong evidence that the

route to chaos is according to the Feigenbaum scenario ([8], [9]); in addition the universal constants

computed by Feigenbaum for one-dimensional nonlinear non-invertible maps, were computed from

our numerical data with two digit accuracy. In the sequel we term chaotic dynamics just beyond

the accumulation point, in parameter space, as Feigenbaum chaos.

In this article we present the results of extensive numerical computations for general initial

conditions. Comparisons with previous studies (e.g. [15], [16], [18]) have been made where there is

an overlap with full agreement. Our particular interest is in lower values of � where the dynamics

gets increasingly complicated.

2 Numerical methods

2.1 Approximation of the solution

The assumption that the initial data is spatially periodic of period 2�, allows us to represent the

solution u(x; t) of the Kuramoto-Sivashinsky equation (from now on KS) as :

u(x; t) =
X
k�1

(�k(t) coskx + �k(t) sin kx) + �0(t) (7)
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The conservative nature of KS implies that �0(t) remains constant, i.e.

d�0(t)

dt
=

1

2�

d

dt

Z 2�

0
u(x; t)dx =

1

2�

Z 2�

0
ut(x; t)dx

= �
1

2�

Z 2�

0
(uux + uxx + �uxxxx)dx = 0:

One could easily observe that whenever u(x; t) is a solution then so is u(x� ct; t)+ c, which allows

us to assume �0(t) = 0 for simplicity. Replacing u(x; t) by its Fourier representation in the PDE

we obtain

ut + uux + uxx + �uxxxx =

=
X
k�1

(�0k � (k2 � �k4)�k � Ak) coskx+ (�0k � (k2 � �k4)�k �Bk) sin kx)

where

Ak = �
k

2

X
m+n=k

�m�n +
k

2

X
m�n=k

(�m�n � �n�m) (8)

and

Bk =
k

4

X
m+n=k

(�m�n � �m�n) +
k

2

X
m�n=k

(�m�n + �m�n) (9)

Thus �nally KS equation becomes equivalent to an in�nite dimensional system of ODEs :

�0k = �k�k +Ak (10)

�0k = �k�k +Bk (11)

where k 2 IN and �k = k2 � �k4 with

Ak = Ak(�1; �2; :::; �1; �2; :::) and Bk = Bk(�1; �2; :::; �1; �2; :::)

In the case of the Generalized Kuramoto-Sivashinsky equation

ut + uux + uxx + �uxxxx + Du = 0 (12)

where D is a dispersive kernel, see Papageorgiou et al [25], the resulting in�nite dimensional system

of ODEs is quite similar

�0k = �k�k + ��k + Ak (13)

�0k = �k�k � ��k +Bk (14)

where � is de�ned by

(Du)^(k) = i�û(k) (15)

It is already established by Il'yashenko [17], Collet et al [5], Goodman [13], that all the spatial

Sobolev norms of the solution of KS equation for arbitrary initial conditions, remain bounded for

all times, which implies that

!k = lim
t!+1

supj�k
2 + �k

2j1=2
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decays faster than any algebraic rate. Collet et al. [6] have already proved that the decay is

exponential. Furthermore they present numerical evidence to support a conjecture that the number

of determining Fourier coe�cients is proportional to ��1=2.

Such numerical evidence justi�es approximation of the solution of the KS by truncation of

higher frequencies. The size of the truncation can be determined by the Collet et al. [6] numerical

study of the decay rate of the Fourier coe�cients, but a �rst estimate of this is obtainable from

the argument that follows. The KS equation in Fourier space can be written as :

d

dt
û(k; t) = �k û(k; t)� ^(uux)(k; t) (16)

or

d

dt
û(k; t) = �kû(k; t)� ik

^
(
1

2
u2)(k; t) (17)

We also have :

Fact : If � is positive and f(t) is in L1[0;+1) then the solution of x0 + �x = f(t) satis�es:

lim
t!+1

sup jx(t)j �
1

�
jjf jj1 (18)

Using the above result in combination with (17), we observe that, if we had, even a rather rough

estimate of the size of u and its norms, we could obtain an idea of the number of Fourier coe�cients

with signi�cant numerical contribution to the approximate solution of the KS equation.

Having used various numerical schemes, we obtained su�ciently good estimates of the size of

u, as well as of u2, uux and of jujL2. Thus we subsequently obtained an estimate of the number of

numerically signi�cant Fourier coe�cients. It should be mentioned here that the existing analytical

results alone can not be of much practical value in determining the truncation size.

Currently we use a �nite di�erence scheme of variable time step to integrate the truncated

system of ODEs

�0k = �k�k + AN
k (�1; �2; :::; �N; �1; �2; :::; �N) (19)

�0k = �k�k +BN
k (�1; �2; :::; �N; �1; �2; :::; �N) (20)

where k = 1; 2; :::;N and

AN
k = �

k

2

k�1X
m=1

�m�k�m +
k

2

N�kX
m=1

(�m�m+k � �m�m+k) (21)

BN
k =

k

4

k�1X
m=1

(�m�k�m � �m�k�m) +
k

2

N�kX
m=1

(�m�m+k + �m�m+k) (22)

Our scheme turns out to be extremely stable due to the form of the linear part of the right hand

side of the system. We emphasize that even though �k is bounded from above, with a mild upper

bound namely

�k �
1

4�
;
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for all k 2 IN, it could have a negative lower bound very large in absolute in our truncated system.

For example, if N = 32, � = :01 then �N � �9:5� 103. Thus if �t is such that

jlN j�t = O(1)

then the relative local numerical error for �N , �N is also O(1), since at each time step the linear

semigroup multiplies �N , �N by exp(lN�t). We should also note here that in the nonlinear part of

the system of ODEs corresponding to high frequencies in our truncated system, i.e., AN
k , B

N
k , most

of the contribution comes from the low frequency coe�cients. This implies that higher frequency

coe�cients are slaved by the low frequency ones due to the scheme; this is a distinguishing feature

of dissipative in�nite dimensional dynamical systems and is thus inevitable. Still we wish to allow

the high frequencies as much freedom as possible in order to enable potential individual behavior.

In achieving this we incorporate a modi�cation suitable for sti� systems of ODEs. Sti�ness is

caused here by the big variation of the values of �k and thus the time step in our modi�ed scheme

varies according to the size of �k . Nevertheless the relative local error in every individual term also

varies, in our scheme, according to its contribution to the solution.

Altogether the local numerical error, due to the approximation of the solution of the system of

ODEs, is reduced to be insigni�cant compared to the one caused by the truncation alone. It should

be clari�ed at this point that even with coarser time step subdivisions than the ones in current use,

the relative local error to the solution pro�le due to the high frequencies is satisfactory. High order

accuracy, i.e. the local relative error being kept below the level of 10�6, is employed only for the

sake of studying high order frequencies and their long time in
uence on the nature of the global

attractor.

2.2 Numerical Experiments

We have carried out a very large number of numerical experiments, testing more than 800 values

of the dissipation parameter � ranging fromz � = :99999999 to � = :002. In representative values

of our dissipative parameter � we carried out several runs to make sure that the behavior of the

attractor corresponding to that � does not change with more Fourier coe�cients of �ner time

step. This is necessary since our major concern is not just the local error but faithful reproduction

of the long time behavior. The size of the truncation ranged from N = 4 to N = 512 making

computation in the latter case rather slow. Most important of all is that many cases had to be

followed for very long time in order to achieve convergence to the corresponding attractor and/or

to accurately classify the attractor. For example in the case � = :1212267996068, the attractor is

zIf � � 1 then

lim
t!+1

u(x; t) = �u0 =
1

2�

Z 2�

0

u0(x)dx; (23)

since KS equation implies that

1

2

d

dt
ju(�; t)j

2
2 = jux(�; t)j

2
2 � �juxx(�; t)j

2
2

and for u 2 L2[0; 2�], 2�-periodic, with
R 2�
0

u(x)dx = 0 we have the following inequalities:

juj2 � juxj2 � juxxj2

On the other hand if � � 0 the problem is ill-posed.
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periodic with 214 distinct maxima and as many minima in the L2 norm as a function of time. This

particular value of � follows previous ones corresponding to 13 period doubling bifurcations. The

period is estimated to be T � 25573, which corresponds to approximately 5:1� 107 time steps and

each step corresponding to substeps. Satisfactory convergence to the periodic attractor occurred

after 109 time steps.

In representative cases, of di�erent values of �, we have used our method to estimate the error

caused by the truncation. The relative error, with respect to the L2 and H1 norms ranged from

10�6 to numerically insigni�cant. Though 10�6 might look big, we should point out that our

study's major target was not to run the most accurate algorithm - which we did in selected cases.

Instead it was to carry out many and long runs, and keep su�cient accuracy, in order to reproduce

the nature of the corresponding attractor. Classi�cation of the nature of the attractors at each

di�erent value of � made it possible to determine the windows in the parameter � space. Most of

the runs had to be carried out in order to accurately determine the limits of the windows of �, and

furthermore determine whether the transition between the two kinds of attractors was smooth or

not. A case of a smooth transition is a bifurcation; A period-doubling is one such as well as a case of

eigenvalues bifurcations of the Jacobian of the 
ux of our dynamical system which cause transition

from stationary/traveling attractors to periodic or chaotic ones. A non-smooth transition is a case

when we have for a ��interval, [�1; �2] say, coexistence of two or more invariant locally attracting

sets. While one of them was attracting most of the initial data, as � varies, another one becomes

suddenly more likely to attract most initial data. For example, in the case of � = :232, we have

coexistence of a unimodal traveling attractor and of one with periodically appearing homoclinic

bursts. The second one is more attracting. Even though the exact bifurcation values of � depend

on the accuracy of the numerical scheme, the nature of the bifurcation does not depend on the

accuracy provided that the method is of su�cient accuracy since the system has �nite degrees of

freedom. This observation forces us to use higher accuracy when we seek better approximation of

the bifurcation values of �.

2.3 Characterization of the attractors

As � varies the long time behavior of the solution does also, in some cases smoothly and in others

not. Di�erent values of � correspond to stationary (unimodal, bimodal, trimodal,...), traveling,

periodic and chaotic attractors. Stationary attractors are easy to observe, and their stability can

be studied with standard methods. It su�ces to check the eigenvalues of the Jacobian of the

truncated system at the stationary pro�le. Similarly in the case of traveling pro�les, where one

could easily determine its speed of propagation :

c =
1

�t
Arg(

�1 ��1 + �1 ��1

�21 + �21
;
�1 ��1 � �1 ��1

�21 + �21
) +O(�t2) (24)

where

(�1; �1) = (�1(t��t); �1(t��t))

( ��1; ��1) = (�1(t+ �t); �1(t+ �t))

In the case of periodic attractors more sophisticated numerical methods are required for their

quanti�cation. First suspicion of a periodic attractor comes from the energy versus time plot -
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E(t) = ju(t; �)jL2. The evidence becomes more convincing once we obtain the phase plane of the

energy plots - i.e. E(t) versus dE(t)=dt, where the values of dE(t)=dt are accurately obtainable

using a suitable interpolation of several points (tk ; E(tk)) . Periodic attractors correspond to closed

phase curves and the number of minima/maxima is the number of the points where the phase

curves intersect the E � axis, i.e. dE(t)=dt = 0 with d2E(t)=dt2 > 0 or < 0 respectively.

Nevertheless we wish to have more accurate quantitative data such as the exact period as well as

the exact values of the local extrema, in order to accurately determine period doubling bifurcations

and study the potential fractal nature of the return mapx of the extrema. In order to achieve that,

we have used a method of calculation of the extrema by an optimized polynomial interpolation over

a su�ciently large number of points (tk ; E(tk)) . The polynomial of the interpolation is obtained

by a suitably weighted least squares method over consecutive points, many more than the degree

of the polynomial sought for. Weights in the least squares approximation, reduce the e�ects of

higher order polynomial terms and the round-o� error caused by the computation of the quantity

used in the interpolation. It is of critical importance that all points of the interpolation lie in the

convex or concave region, when we look for minima or maxima respectively. This method, in the

case of test functions, gave us accuracy higher than the machine precision, nevertheless, as it could

be shown analytically, the precision in the estimation of local extrema, depend on the time step

and the degree of the interpolation polynomial. Weights are introduced to make the points which

are closer to the local extremum have a higher contribution to the interpolation.

The original motive in developing the interpolation algorithm was to accurately determine the

period doubling bifurcations and establish the appearance of the Feigenbaum universal constants.

(See Smyrlis and Papageorgiou [33].) This method turned out to be extremely helpful in deter-

mining features such as the fractal nature of attractors, by detecting such behavior in the return

map of the energy minima, for example. Most successfully it has enabled us to detect and classify

the quasiperiodicity of attractors. We should mention here that the same conclusions, concerning

periodic attractors are also obtainable if instead of the L2 norm and its extrema we had used for

their detection, other quantities such as the H1 norm and the Fourier coe�cients. However there

is an exception here, the case of traveling/periodic attractors, where instead of

u(x; t+ T ) = u(x; t) for all (x; t) 2 IR � IR+

we have

u(x; t+ T ) = u(x� cT; t) for some c 2 IR

Thus E(t) has period T , but û(k; t) is in general a quasiperiodic function unless cT=2� is a rational

number. Fourier coe�cients being quasiperiodic produce very beautiful pictures - �k(t) versus

�k(t). The speed of propagation and period could also be accurately estimated using a suitable

interpolation.

In the classi�cation of chaotic attractors and transitions to chaos scenarios, then, the extrema

of E(t) and their return maps played the key role. We should mention here that if f(t) is a

quasiperiodic function, for example

f(t) = cos t+ cos(
p
2t);

then, although there is not much to observe in the graph, one could observe a lot in the return

map. If (mk)k2IN is the sequence of the local minima, in the order they appear for t � 0, then their

xLet an, n 2 IN be a sequence of real numbers, then the set of points (an; an+1), n 2 IN, which is a subset of IR2,
is called the Return Map of (an)n2IN. In the case of a function f : [0;1]! IR the return map of f is the return map

of the sequence of the local minima (or maxima or extrema) of f .
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return map, lies on a closed curve. In general if f1(t), f2(t) are periodic functions with irrational

frequency ratios, then the return map of f(t) = f1(t) + f2(t) lies on one or more lines. This is

generalized to three or more irrational frequencies.

Visualization of the return map of the local minima (or maxima) of the energy (or other quanti-

ties such us the H1 norm which magni�es the contribution of high frequencies) enables us to classify

the attractors, not only in the quasiperiodic case, but also in more complicated chaotic ones.

In certain cases the return map plot has a fractal nature. Foliations are observable when one

plots successive magni�cations of the graphs. We are in the process of estimating numerically the

Hausdor� dimension of the graph corresponding to the return map in order to establish the rate of

growth of the Hausdor� dimension as � decreases, particularly in those chaotic cases where there is

no recognizable pattern. In such studies it is imperative that the local extrema are computed with

a high accuracy, in particular if magni�cations in the return map of several orders of magnitude

are to be carried out.

3 Numerical results

3.1 Dynamics for \large" �: 0:09 < � < 1

For values of � larger than about 0:1 a fairly complete picture of the dynamics has been given

by numerous authors ([15], [16], [18]). Steady state or traveling waves, including their bifurcation

diagrams are computable by well-developed bifurcation algorithms, see for example ([18]). Our

interest is on the spatio-temporal evolution in chaotic attractors which led to the development of

the accurate code tracking the time evolution of solutions, described in Section 2. For completeness,

however, and to set the stage for the results that follow we give a brief description of the dynamics

corresponding to \large" �. We note that as � decreases computed attractors are not necessarily

global ones; our numerical results are based on large time solutions of general initial value problems

and the numerical solutions given here belong to the most strongly attracting ones in the sense

that they are reproduced by fairly di�erent initial conditions (e.g. a sinusoidal initial condition or

one having a white noise spectrum).

A schematic of the dominant attractors in this range is given in Figure 1. The interval � � 1

is not included in Figure 1 since it is trivial in the sense that a uniform steady state is achieved

here which is equal to the spatial mean of the initial data. The �gure is drawn to scale in order

to give the relative sizes of attractors. The letters A-F are used to identify the di�erent inter-

vals which are brie
y described below. According to extensive computations, there is an interval

(:12116; :1212267996064) which cannot be distinguished on Figure 1 due to its small size - we call

this interval E1 and describe it below.

Interval A: 0:307602� � < 1.

For 0:30765< � < 1 solutions get attracted to a 2�-periodic steady state (unimodal �xed point).

The energy, or the spatial L2-norm of the solution, de�ned as E(t) =
R 2�
0 u2(x; t)dx increases as a

function of � in this interval and attains a maximum at � � 0:59094.

Interval B: 0:232491� � � 0:307601.

For 0:232491< � � :307601 a 2�-periodic (unimodal) steady-state traveling wave is found - the

wavespeeds increase monotonically from zero near the upper edge of the window to approximately

0:956 at � = 0:232491.
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Interval C: 0:17735 � � � 0:23249.

A bifurcation occurs just below � = 0:232491, and in the range 0:17735� � � 0:23249 periodic

homoclinic bursts (PHB) emerge as the most attracting states. The PHB solutions found in this

window have L2-norms which are constant except for periodically occurring homoclinic bursts. The

time intervals between bursts vary from approximately 21 � 30 time units for � between 0:23249

and 0:2, and then increase dramatically as � decreases further; for example the time between bursts

for � = 0:179; 0:178; 0:1775; 0:1774; 0:17735 are approximately 200; 450; 1700; 4500 and 18000 time

units respectively.

Representative results are given in Figures 2 and 3 for � = 0:2. Figure 2 shows the evolution

of E(t) after the solution has settled into an attractor - a range between 750 and 1000 time units

is shown. The energy is constant with homoclinic bursts occurring at approximately every 30 time

units. The phase plane of E(t) provides strong evidence that the bursts are periodic. The solution

spends most of its time at the rightmost point in the phase plane diagram and every 30 time units it

loops around in less than 5 time units, with the process repeating periodically. The pro�le between

bursts is steady for 30 time units and is in fact a bimodal �xed point, that is only even Fourier

modes are non-zero. It has been con�rmed that the bimodal pro�le during bursts is obtainable

from the unimodal global �xed point attractor at � = 0:8 by use of the property (26) discussed

in Section 2. We can surmise, therefore, that the bimodal �xed point attractor is unstable and

overlaps with a time-periodic attractor.

The evolution of E(t) does not provide details about individual Fourier coe�cients since it is an

integral quantity. The time history of the �rst two harmonics is given in Figure 3. The coe�cients

of cos(x), sin(x) and cos(2x), sin(2x) are plotted on the same scale so that their evolution can be

followed concurrently. It is evident from the primary Fourier mode plots that the amplitudes are

zero except during bursts which appear as sharp peaks. The peaks alternate from small size to larger

size during each burst; there also seems to be an energy exchange between the two amplitudes in

that during each burst the cos(x) and sin(x) amplitudes attain alternatively large and small peaks.

The sign of individual amplitudes during bursts does not appear to have a recognizable pattern

but seems to be random.

The situation is much more regular for the 2nd Fourier mode. The time evolution of the

amplitudes of cos(2x) and sin(2x) are now in phase with bursts appearing as sharp jumps connecting

equal but opposite steady states. Similar results persist for higher modes, the main di�erence being

a marked decrease in amplitude.

Interval D: 0:131815 � � � 0:1773.

The time increase between bursts heralds the appearance of a new �xed point attractor. It is

found that in the range 0:131815 � � � 0:1773 solutions get attracted to bimodal steady states,

i.e. �-periodic stationary pro�les. According to the property (26) these solutions are obtainable

from the unimodal solutions in the subinterval [0:5272; 0:7092] of A by choosing � = 2.

Intervals E, E1: 0:1212267996068� � � 0:13181, and E2: 0:12116 � � � 0:1212267996064.

The bimodal steady states loose stability and a time periodic attractor is entered. The energy

E(t) has an approximate period of 0:93862 time units at the beginning of the window, � = 0:13181.

The period increases monotonically as � is decreased and the �rst period doubling takes place in

the interval :12175 < � < :121752. This pattern is repeated, i.e. a monotonic increase in the

period and then a period doubling, and the following eleven successive period doublings were found

in each of the open intervals (:1213145; :121315), (:12124493; :12124495), (:12123065; :1212307),

(:12122762; :12122775), (:121226975; :12122698), (:121226835; :12122684), (:121226805; :121226808),
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(:1212268012; :1212268014), (:1212267998; :1212268), (:12122679968; :1212267997) and

(:121226799622; :121226799625). The period by the twelveth period doubling is T � 12780 time

units. Figure 4 shows the phase planes of the energy for representative cases capturing the �rst

�ve period-doublings. The values of � are given on the Figure as well as the number of minima

of the energy - there are 2p minima where p is the number of period doublings that have taken

place. It has been con�rmed, but is not included here, that the cascade follows the Feigenbaum

scenario ([8], [9]) with �-intervals between successive period doublings decreasing geometrically by

a universal factor � = 4:6692016 . . .. The data analysis and methods used are identical to those

of Papageorgiou and Smyrlis [27] and Smyrlis and Papageorgiou [33] who considered odd-parity

solutions of the KS equation. The second Feigenbaum universal constant which pertains to the

geometry of the attractor is also accurately supported by those results. By analogy with the theory

of non-invertible one-dimensional maps, coupled with the numerical evidence given here, it is rea-

sonable to assume that an accumulation point exists, �0 say, below which the solution is chaotic;

this of course is hard to prove since we are dealing with di�erential systems of large dimensions (24

coupled equations are used in this window).

After extensive computations we are able to identify an interval E1 = [0:12116; 0:1212267996064]

which we describe as supporting Feigenbaum chaos. Evidence for this comes from the study of

return maps of the energy minima (see Section 2 for a description of the data analysis tools used

here) which give \strange attractors" with as many as 213 pieces at the beginning of interval E1.

The number of pieces decrease and when � = 0:12118 the attractor consists of only one piece. A

picture of a strange attractor constructed from the return map, is given in Figure 5(i)-(vii) which

corresponds to � = 0:12122679907. The return map of a large number of energy minima beyond

transient behavior is shown in Figure 5(i). There are 32; 034 points in this plot and each point is

represented by a dot. The points lie on a regular looking object and since each point gets mapped

to another point in the plot by the action of the dynamical system, the pieces traced out mimic the

analogous one-dimensional non-invertible map representation of the 
ow; the equivalent plot for

the logistic map would trace out parts of a quadratic function. Interestingly, Figure 5(i) resembles

the quadratic map but the di�erences have not been quanti�ed. The similarity property of strange

attractors is however exhibited in Figure 5. Starting from Figure 5(i), successive enlargements are

made of the pieces of the attractor which are marked by the letter `e'. The scale of the enlargement

can be followed by noting the horizontal scale of successive diagrams. The �rst enlargement, Figure

5(ii), is of what appear as two pieces in 5(i) near the minimum of the plot. On enlargement a picture

which is clearly similar to the complete attractor in 5(i) emerges. The two pieces near `e' in 5(ii)

are enlarged to give 5(iii); again similarity with the previous plots is remarkable considering that an

ampli�cation of approximately a factor of 50 has taken place. The one piece near `e' in 5(iii) is now

enlarged to give the three clusters in 5(iv). The rightmost marked piece is enlarged to give 5(v) and

its rightmost piece is enlarged to give 5(vi). Finally an enlargement of the leftmost marked cluster

of 5(vi) gives the �nal plot Figure 5(vii) which contains just four points. The successive plots 5(iv)-

(vii) provide additional strong evidence of the self-similarity of the attractor. We note that such

conclusions are only possible if a large and accurate data base is available - for instance in going

from Figure 5(i) to Figure 5(vii), an ampli�cation factor of approximately 3� 106 has taken place

along the horizontal axis. In the absence of a large and accurate data set of minima (see Section 2

for the interpolation algorithms), the number of return map \iterations" which produce the strange

attractor would be inadequate for su�cient levels of enlargement that exhibit self-similarity. In

addition loss of accuracy in the minima estimation would produce a noisy data set which is of little

value in exhibiting self-similarity.
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Interval F: 0:09051 � � � 0:121155.

Near the upper edge of this window, 0:121155 � � � 0:12105, solutions are attracted to ho-

moclinic bursts, with the bursts being chaotic but with a low dimensional attractor. The bursts

are spaced apart at roughly equal times and in between them the pro�le is bimodal and is obtain-

able from the equivalent unimodal steady state in interval A according to the self-similar property

(26). Typical results are given for � = 0:12115. The homoclinic bursting is shown in the evo-

lution of the energy and its corresponding phase-plane, Figures 6; the phase-plane indicates the

non-periodicity of the bursts. It has been con�rmed that the pro�le in between bursts is given by

u(x; 0:12115) = 2U(2x; 0:4846) where U(y; �), 0 � y � 2� is the steady-state pro�le in interval A.

Further information about the chaotic bursts is given in Figures 7(a)-(b). Figure 7(a) gives the

evolution with time of the critical points of E(t), that is its local maxima and local minima. For

a given time interval, there is a discrete set of energy maxima and minima and each of these is

represented by a dot in the plot. The longer and relatively regularly spaced gaps with no points

in the plot denote time intervals between bursts while darker segments correspond to the bursts.

The irregularity of the positioning of the points indicates the chaotic aspect of the bursts and this

can be seen more clearly in the return map of the energy minima in Figure 7(b) which suggests

a strange attractor with foliations. The bimodal steady state in-between bursts is at the point

(10:7415876; 10:7415876) on the return map diagram, which is marked with an open circle. Succes-

sive enlargements of the attractor are given in Figure 8(i)-(vi). Again the point corresponding to

the inter-bursting bimodal steady state is marked with an open circle and �ve successive enlarge-

ments are made in its neighborhood. The similarity of the attractor is discernible, particularly if

we note the horizontal extent of the attractor given in each plot in Figures (ii)-(vi); the horizontal

extents are approximately 0:6, 0:15, 0:011, 0:001 and 0:000005 for Figures 8(ii)-(vi) respectively.

An enlargement of the order 105 has taken place in going from Figure 8(ii) to Figure 8(vi) and

the positioning of the dots, that is the geometry of the attractor, is remarkably similar; from a

numerical point of view, we note that such details can only be captured if the energy minima are

computed accurately to at least seven decimal places - this is another reason for the high order

interpolation schemes used in constructing the minima from a set of energy values at discrete time

intervals no smaller than the time-step of the integrator.

As the value of � is decreased below approximately 0:121045 the homoclinic bursts take place

more regularly in time and they are almost periodic. A more careful scrutiny of the data from the

representative case � = 0:1 reveals that the 
ow is chaotic, and the bursting phenomenon has a low

dimensional attractor. Once again the unstable quiescent states between bursts give pro�les which

are bimodal and given by u(x; 0:1) = 2U(2x; 0:4). A plot of E(t) together with a magni�cation of

a burst is shown in Figure 9. The bursts are almost periodic and take place every 33 time units,

approximately; the energy phase-plane has been shown not to be a closed curve of index 2 as in

the homoclinic burst solutions found in interval C described above. Figure 10 shows the return

map obtained from the energy minima. The point marked P corresponds to the steady state in

between bursts and as the magni�cation shows, the attractor in the neighborhood of this �xed

point consists mainly of two lines meeting at an angle smaller than �=2. Additional information

about the bursting is given in Figure 11. The Fourier amplitudes of the �rst four modes are plotted

against time, that is we plot
q
a2i + b2i for i = 1; 4 where u(x; t) = �N

n=1(an cos(nx) + bn sin(nx))

is the Fourier-Galerkin representation of the solution. In between bursts, only the even modes are

non-zero and as seen from the plots the amplitude of the fourth mode is smaller than that of the

second one. During a burst, however, the even modes loose energy to the odd modes as can be

seen clearly from the Figure; the amplitude of even modes always decreases (except right at the

end of the burst) and at the same time the amplitudes of odd modes become non-zero for the
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duration of the burst but vanish again after the homoclinic burst is �nished. This behavior is very

characteristic of the global energy transfer mechanism present in the KS equation.

3.2 Dynamics for lower values of �: � < 0:09.

As � decreases the dynamics become more complicated. A larger number of determining modes is

required and co-existence of attractors is more likely. From a numerical viewpoint the computations

become more expensive and accuracy criteria more stringent.

A large number of numerical experiments have been carried out over several years and a sum-

mary of the attractors is given in Figure 12. The Figure represents the �-line (not drawn to scale)

along with the most strongly attracting large time solutions found by us; note that the various

attractors given in Figure 12 are not necessarily global ones but the window boundaries given

delineate the regions where an attractor loses stability. The type of attractor was determined by

applying the data analysis described earlier.

In interval E described earlier, we provided evidence of a period-doubling route to chaos, and

also a route to chaos through homoclinic bursting as in interval F above. A third route to chaos

is via a quasi-periodic attractor and this route is supported by the �rst three windows in Figure

12. A time periodic attractor looses stability to a quasi-periodic one at � = 0:087679 and there

is transition to chaos below � = 0:087023. It is quite hard to discern the di�erence between a

chaotic attractor and a quasi-periodic one by inspection of the signal of E(t). The return map is

a valuable tool in doing this, since the return map (of the energy minima for instance) of a quasi

periodic attractor consists of lines with no foliations; an analogy is the return map obtained from a

Poincar�e section of motion on a torus, in which case it is a circle whose perimeter becomes dense as

the iterations increase. In the chaotic regime, the return map contains foldings and self-similarity

as exhibited in several examples earlier. This type of chaotic motion is di�erentiated from what

we term as unrecognizable chaos in that the tools employed by us to analyze the dynamics, yield

information about the structure of the attractor.

As can be seen from Figure 12, among the regions of di�erent unsteady and complicated spatio-

temporal motions there emerge stable �xed point attractors with increasingly higher modal be-

havior, i.e. with shorter periods. In Figure 13 we give a summary of the computed attractors so

far, as � decreases to approximately 0:006. The numbers on the �gure denote the modal form of

the solution, for example 3M is a trimodal attractor with the only non-zero Fourier coe�cients

being multiples of three. As already noted in the Appendix, one can construct steady states of

increasingly shorter periods (i.e. higher modal behavior) by application of the similarity property

(26). This construction does not imply stability but our numerical results produced by solving

initial value problems, show that such �xed points are observable as large time solutions, given

appropriate initial conditions. In what follows we use numerically computed solutions from each

of the windows which support multimodal steady states (i.e. 3M, 4M, 5M, 6M, 7M, 8M and 9M)

and show that they come from the unimodal �xed point attractor in interval A (see Figure 1).

Making the assumption that the multimodal �xed points arise from the self-similar property

(26), we �rst transform the �-windows which support these steady states by multiplying by N2

where N is the modal characterization of the attractor. This transformation gives the corresponding

viscosity interval in the global �xed point attractor A of Figure 1. The results are summarized in

Table 1.
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Attractor � interval Transformed �-interval (�N2)

3M [.07465,.059922] [.67185,.539298]

4M [.043848,.034625] [.701568,.554]

5M [.026984,.022604] [.6746,.5651]

6M [.01829,.015845] [.65844,.57042]

7M [.012994,.01174] [.636706,.57526]

8M [.009905,.009204] [.63392,.589056]

9M [.007479,.007305] [.605799,.591705]

10M .006 .6

Table 1

Table 1 indicates that the transformed intervals for each of the multimodal attractors listed lie in

the �-interval which supports a unimodal global �xed point. In what follows we provide numerical

evidence that each of the multimodal attractors at decreasing values of �, are indeed obtainable

from the transformation (26). This is done for the pro�le corresponding to � = :6 in interval A, since

this is seen to be common to all entries in the Table. For N = 3; . . . ; 10 we compute the steady state

attractor at the corresponding values � = 0:6=N2 and denote the pro�le by uN(x). These pro�les

are shown in Figure 14; the period of corresponding pro�les is seen to be 2�=N and the amplitude

increases with N . Note that due to translation invariance each of the pro�les can be shifted by a

constant along the x-axis and it remains a periodic solution. This observation is particularly useful

in the normalization construction that follows. Each pro�le is then normalized according to (26),

that is we de�ne a new function, UN (y) say, on [0; 2�] by applying the transformation

UN (y) =
1

N
uN (x=N): (25)

This transformation was �rst noted by Frisch et al. [12] who went on to carry out the linear

stability of these pro�les for large N - see below. If the self-similarity property (26) is valid for

these multimodal �xed points, then the UN(y) for N = 1; . . . ; 10 are identical to within a horizontal

shift and equal to the pro�le obtained at � = 0:6. It was found that the computed pro�les 4M-10M

had to be shifted by � in order to put them in phase with the globally attracting pro�le at � = 0:6

(see earlier comments). The results are given in Figure 15 with di�erent symbols used to denote

di�erent values of N . The solid line corresponds to the generating �xed point at � = 0:6. It is

seen from the Figure that the self-similarity property is indeed the controlling mechanism in the

generation of these high-modal steady states as � decreases.

The data of Table 1 indicate the parameter range of the �xed point unimodal attractor which

needs to be considered in order to transform, according to the similarity property, to the interval

obtained numerically for a given multimodal attractor. In the stability studies of Frisch et al [12]

and Papageorgiou et al [26], the underlying basic pro�les are the multimodal ones indicated above

and constructed in the Appendix, as the value of N or � increases. Such solutions are found to be

stable in the �-interval (0:6; 0:7), approximately. This result would imply that given a value of �

in the stability window, the multimodal pro�les obtained by the self similarity property (26), i.e.

the one-parameter family Nu(Nx; �=N2) for N = 1; 2; . . . as N gets large, are linearly stable. Our

numerical results are in agreement with this theoretical prediction for N as large as 10. Note that

computation of steady states with N > 10 has not been achieved yet because the window which

supports such states has size of the order of machine precision. This may be achievable with higher

precision arithmetic but such explorations are not undertaken here.
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4 Conclusions

We have given many quantitative features of solutions of the Kuramoto-Sivashinsky equations

computed with general initial data and spatially periodic boundary conditions. Features such as

strange attractors and periodic or chaotic bursting phenomena have been elucidated. Of particular

interest is a set of computed multimodal solutions found at decreasing values of � and supported

on smaller and smaller windows. It has been shown that these solutions (the last computed one is

a decamodal pro�le, i.e. one with all Fourier coe�cients zero except those which are multiples of

10) derive from the unimodal �xed point attractor in :3 < � < 1, by a self-similar transformation

property of the equation. It can be concluded that such solutions are at least linearly stable (in

the sense that they are computable as large time solutions of a nonlinear initial value problem)

and our numerical results are in full agreement with the stability theory of Frisch et al [12] and

the modulation theory of Papageorgiou et al [26] who study the stability of such multimodal

steady states. The numerical results given here provide strong support for the modulation stability

theories.

APPENDIX

The following property of (2) is useful. It has been established numerically that for 0:307602<

� < 1 (this is interval A described in Figure 1 and Section 3) the KS has a global unimodal �xed

point attractor. That is given fairly general initial conditions (for example a white noise spectrum)

solutions evolve to a steady state with period 2�. Denote such steady states by U(x; �) with � in

the interval A. For any constants � and c, equation (2) has the following two-parameter family of

solutions

u(x; t) = �U(�(x� ct); �2�) + c: (26)

This follows by the scale and Galilean invariance of KS. For stationary waves c = 0, while peri-

odicity implies that � is an integer. Property (26) can be used to generate steady states of (2)

at geometrically decreasing values of the viscosity. For example if the 2�-periodic steady state is

known at � = 0:8, we can construct a steady state at � = 0:8=22 by choosing � = 2; this solution

has period �, i.e. is bimodal, and amplitude twice that of the starting steady state; this folding and

scaling process can be repeated ad in�nitum to obtain multimodal steady states at geometrically

decreasing values of �. Clearly in the small � limit the amplitude of such steady states is of the

order of ��1=2, which is also the order of the L2-norm of these steady state solutions. Even though

the steady states exist and can be constructed as shown above, they are not necessarily stable and

may not be observed in numerical experiments. What has been found, however, is that there is a

subwindow of interval A which can be used to generate multimodal steady states which are linearly

stable.
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LIST OF FIGURES

Figure 1 Schematic of the various attractors for larger values of �. The diagram is to scale

and the various most strongly attracting solution regions are indicated.

Figure 2 Interval C: Periodic homoclinic bursts for � = 0:2. The energy and its phase plane

are given.

Figure 3 Interval C: Periodic homoclinic bursts for � = 0:2. Time evolution of the 1st

and 2nd Fourier modes. The graphs show the evolution of the coe�cients of cos(x); sin(x) and

cos(2x); sin(2x). Higher mode amplitudes have much lower amplitudes.

Figure 4 Interval E: Period doubling route to chaos according to a Feigenbaum scenario. The

Figure gives the phase planes of the energy as � decreases. The values of � and the number of

relative minima in each curve are indicated on the Figure. Chaos sets in as the phase plane attains

increasingly more turns which become in�nitely many as an accumulation point is reached.

Figure 5 Interval E1: Feigenbaum chaos, � = 0:12118. Strange attractor produced by the

return map of the energy minima. The Figure gives successive enlargements near the point `e'

marked on each subplot indicating the self-similar nature of the attractor. An overall enlargement

of 3� 106 takes place in going from 5(i) to 5(vii).

Figure 6 Interval F: Chaotic homoclinic bursts, � = 0:12115. The energy and its phase plane

are shown. The bursts occur at regular intervals and are chaotic in nature. The steady attractor

between bursts corresponds to the unimodal global steady attractor in interval A having � = 0:4846

and the similarity transformation (26) (see text).

Figure 7 Interval F: Chaotic homoclinic bursts, � = 0:12115. Time history of the critical points

of the energy (both maxima and minima). The absence of points indicates a constant energy. An

extended chaotic region is seen between approximately t = 1000� 1400, which then gets attracted

to chaotic homoclinic bursts. The lower �gure shows the return map of the energy minima. A

strange attractor emerges and the point between bursts is indicated by an open circle.

Figure 8 Interval F: Chaotic homoclinic bursts, � = 0:12115. Self-similarity of the strange

attractor. Successive enlargements are shown in the neighborhood of `o'. An overall enlargement

of the order of 105 takes place in going from 8(i) to 8(vi).

Figure 9 Interval F: Chaotic homoclinic bursts, � = 0:1. Evolution of the energy together with

an enlargement of a chaotic burst.

Figure 10 Interval F: Chaotic homoclinic bursts, � = 0:1. Return map of the energy minima

indicating a strange attractor. The point P indicates the position in between bursts.

Figure 11 Interval F: Chaotic homoclinic bursts, � = 0:1. Evolution of the �rst 4 Fourier

amplitudes together with the energy (sum of the Fourier amplitudes). It is seen that in between

bursts the even Fourier modes are non-zero while the odd ones are zero, and the steady attractor

is bimodal, then. During bursting an energy exchange takes place with odd modes gaining energy

from even modes. The interval between bursts remains fairly constant over long time periods.

Figure 12 Schematic of the various computed attractors for smaller values of nu (� < 0:09).

The diagram is not drawn to scale but window boundaries are given along with a brief description

of the type of computed dynamics. The attractors are not global.

Figure 13 Distribution of computed steady attractors for � < 0:09. The diagram, drawn to

scale, shows the �-intervals where steady state solutions were found. The notation 1M, 3M, etc.

denotes pro�les which are unimodal, trimodal etc.. The windows of support of higher modal steady

states get decreasingly small as � decreases and their computation becomes prohibitively di�cult.

Figure 14 Computed pro�les corresponding to values of � taken from the global attractor

for large � (interval A in Figure 1) and the intervals 3M, 4M, 5M, 6M, 7M, 8M, 9M and 10M.

The corresponding values of nu are indicated on the Figures and are chosen in order to check the

self-similarity of the solutions (see text).
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Figure 15 Similarity of steady states as � decreases. Collapse of the pro�les given in Figure

14 onto the universal pro�le corresponding to � = 0:6. Di�erent symbols correspond to data taken

from the indicated intervals. The similarity property (26) is used in the construction of the Figure

- see text for details.
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